Maths Chapter 12 – Linear Programming MCQ Question Answers for CUET 2024

1. Of all the points of the feasible region for maximum or minimum of objective function the points
a.
b.
c.
d.

2. The point which does not lie in the half-plane 2x + 3y -12 < 0 is:
a.
b.
c.
d.

3. Question
a.
b.
c.
d.

4. Objective function of a linear programming problem is
a.
b.
c.
d.

5. In a LPP, the objective function is always
a.
b.
c.
d.

6. A set of values of decision variables that satisfies the linear constraints and non-negativity conditions of an L.P.P. is called its:
a.
b.
c.
d.

7. Which of the following is a type of  Linear programming problem?
a.
b.
c.
d.

8. The maximum value of f = 4x + 3y subject to constraints x ≥ 0, y ≥ 0, 2x + 3y ≤ 18; x + y ≥ 10 is
a.
b.
c.
d.

9. The maximum value of z = 3x + 2y subject to x + 2y ≥ 2, x + 2y ≤ 8, x, y ≥ 0 is
a.
b.
c.
d.

10. The objective function of a linear programming problem is:
a.
b.
c.
d.

11. The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

12. The optimal value of the objective function is attained at the points
a.
b.
c.
d.

13. Z = 8x + 10y, subject to 2x + y ≥ 1, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
a.
b.
c.
d.

14. Question
a.
b.
c.
d.

15. Corner points of the bounded feasible region for an LP problem are A(0,5) B(0,3) C(1,0) D(6,0). Let z=−50x + 20y be the objective function. Minimum value of z occurs at ______ center point.
a.
b.
c.
d.

16. Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0
a.
b.
c.
d.

17. A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its
a.
b.
c.
d.

18. In equation 3x – y ≥ 3 and 4x – 4y > 4
a.
b.
c.
d.

19. Feasible region in the set of points which satisfy
a.
b.
c.
d.

20. Question
a.
b.
c.
d.

21. The region represented by the inequation system x, y ≥ 0, y ≤ 6, x + y ≤ 3 is
a.
b.
c.
d.

22. Objective function of a L.P.P.is
a.
b.
c.
d.

23. Question
a.
b.
c.
d.

24. Question
a.
b.
c.
d.

25. Maximize Z = 11 x + 8y subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.


 


Also See :