NEST Chemistry Syllabus
- Physical chemistry
Measurements in chemistry: SI units for fundamental quantities, significant figures, significant figures in calculations
General topics: Concept of atoms and molecules; ’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidationreduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.
Gaseous and liquid states: Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.
Atomic structure and chemical bonding: Bohr model, spectrum of hydrogen atom, quantum numbers; Wave‐particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).
Energetics: First law of thermodynamics; Internal energy, work and heat, pressure‐volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.
Chemical equilibrium: Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.
Electrochemistry: Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.
Chemical kinetics: Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).
Solid state: Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, alpha, beta, gamma), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.
Solutions: Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.
Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of alpha, beta and gamma rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to protonneutron ratio; Brief discussion on fission and fusion reactions.
- Inorganic Chemistry
Study of different groups in periodic table
Group 1A (Preparation, properties and reactions of alkali metals, with emphasis on chemistry of Na and K ‐ their compounds ‐ oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates)
Group 2A (preparation, properties and reactions alkaline earth metals with emphasis on Mg and Ca ‐their compounds such as oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates)
Group 3A( chemistry of Boron and its compounds – diborane)
Group 8A (preparation, properties and reactions inert gases with emphasis on chemistry of Xenon)
Group 7A(halogen chemistry with special emphasis on chemistry of chlorine )
Study of nonmetals – C, S, N, P (especially oxides and oxyacids compounds of these elements, in addition phosphines for P, ammonia for N) and O (peroxide and ozone), Si (silicones and silicates) (allotropes of C, S,
N should be covered)
Transition elements (3d series): Definition, general characteristics, variable oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin‐only magnetic moment;
Coordination compounds: nomenclature of mononuclear coordination compounds, cis‐trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral)
Metals and metallurgy: General methods involving chemical principles, General operation stages involved in metallurgical operation, Metallurgy of p‐block element (emphasis on Al), Metallurgy of Fe‐triad (Fe, Co, And Ni with more emphasis on Fe metallurgy), Metallurgy of coinage metals (Cu, Ag with more emphasis on Cu)
- Organic Chemistry
Concepts: Hybridisation of carbon; Sigma and pi‐bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono‐functional and bi‐functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto‐enol tautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.
Preparation, properties and reactions of alkanes: Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions. Preparation, properties and reactions of alkenes and alkynes: Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen); Addition reactions of alkynes; Metal acetylides.
Reactions of benzene: Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel‐Crafts alkylation and acylation; Effect of o‐, m‐ and p‐directing groups in monosubstituted benzenes.
Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer‐ Tieman reaction, Kolbe reaction.
Characteristic reactions of the following (including those mentioned above): Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers:Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and
substituted haloarenes (excluding Benzyne mechanism and Cine substitution).
Carbohydrates: Classification; mono‐ and di‐saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
Amino acids and peptides: General structure (only primary structure for peptides) and physical properties, some examples for separation of amino acid mixture using physical properties.